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Abstract— Discrete memoryless interference and broadcast
channels in which independent confidential messages are sent
to two receivers are considered. Confidential messages are
transmitted to each receiver with perfect secrecy, as measured
by the equivocation at the other receiver. In this paper, we
derive inner and outer bounds for the achievable rate regions
for these two communication systems.

I. INTRODUCTION

We first consider a discrete memoryless interference
channel in which two transmitters wish to send indepen-
dent, confidential messages to their respective receivers.
We refer to such a channel as the interference chan-
nel with confidential messages (IC-CM) and denote it
(X1 × X2, p(y1, y2|x1, x2),Y1 × Y2). This communication
model is shown in Figure 1. We also consider the broad-

Fig. 1. Interference Channel with Confidential Messages.

cast channel with confidential messages (BC-CM), denoted
(X , p(y1, y2|x),Y1 × Y2), in which confidential messages
from a single transmitter are to be communicated to two re-
ceivers. The corresponding broadcast communication model
is shown in Figure 2. The ignorance of a user with respect

Fig. 2. Broadcast Channel with Confidential Messages.

to the message intended for the other receiver is measured
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I. Marić is with Department of Electrical Engineering, Stanford Univer-
sity, Stanford, CA 94305 (email: ivanam@wsl.stanford.edu).

by equivocation. This approach was introduced by Wyner
[1] for the wiretap channel, a scenario in which a single
source-destination communication is eavesdropped. Under
the assumption that the channel to the wire-tapper is a
degraded version of that to the receiver, Wyner determined
the capacity-secrecy tradeoff. This result was generalized
by Csiszár and Körner who determined the capacity region
of the broadcast channel with confidential messages [2]
in which a message intended for one of the receivers is
confidential.

In this paper, we study inner and outer bounds for achiev-
able secrecy regions of both the broadcast and the interfer-
ence channel under the requirement of perfect secrecy. That
is, each receiver is kept in total ignorance with respect to
the messages intended for the other receiver. We first derive
outer bounds which have an identical mutual information
expressions that apply for the broadcast channel when one
sender jointly encodes both messages and for the interference
channel when two senders offer independent inputs to the
channel. The difference is that the optimization is over
different input probability distributions, as will be specified
in the next section. Next, we derive an inner bound for the
interference channel with confidential messages. Since we
require a perfect security for confidential messages, no partial
decoding of the other transmitter’s message is allowed at a
receiver. It precludes rate-splitting schemes used by Carleial
[3] and Han and Kobayashi [4] for the classical interference
channel. Finally, we investigate the inner bound for the BC-
CM based on the Slepian-Wolf binning technique [5]. We
notice that no common message in the sense of Marton [6]
is conveyed to the receivers since we only consider sending
confidential messages in the broadcast channel. Furthermore,
we employ double binning technique to proof the perfect
security requirement.

The remainder of this paper is organized as follows: we
introduce the channel model and state our main results in
Sec. II. We derive outer bounds in Sec. III. We establish
inner bounds for IC-CM in Sec. IV and for BC-CM in Sec. V,
respectively.

II. CHANNEL MODEL AND STATEMENT OF THE RESULT

A. The Interference Channel

A discrete memoryless interference channel with confi-
dential messages is described by finite sets X1, X2, Y1, Y2

and a conditional probability distribution p(y1, y2|x1, x2). As
shown in Fig. 1, symbols (x1, x2) ∈ (X1 ×X2) are channel
inputs at transmitters 1 and 2, and (y1, y2) ∈ (Y1 × Y2) are
channel outputs at receivers 1 and 2, respectively.



Each transmitter t, t = 1, 2, intends to send an independent
message Wt ∈ {1, . . . ,Mt} to the receiver t in n channel
uses with perfect secrecy. The channel is memoryless in the
sense that

p(y1,y2|x1,x2) =
n∏

i=1

p(y1,i, y2,i|x1,i, x2,i) (1)

where xt =
[
xt,1, . . . , xt,n

]
. A stochastic encoder ft

for the transmitter t is specified by a matrix of conditional
probabilities ft(xt|wt), where xt ∈ Xn

t , wt ∈ Wt, and∑
xt∈Xn

t

ft(xt|wt) = 1. (2)

Decoding functions are mappings ψt : Yt → Wt. Secrecy
levels at receivers 1 and 2 are measured by normalized
equivocations

1
n
H(W2|Y1,W1) and

1
n
H(W1|Y2,W2). (3)

An (M1,M2, n, Pe) code for the interference channel
consists of described of two encoding function f1, f2, two
decoding function ψ1, ψ2, and a maximum average error
probability

Pe � max{Pe,1, Pe,2} (4)

where for t = 1, 2,

Pe,t =
∑

w1,w2

1
M1M2

P
[
ψt(Yt) �= wt|(w1, w2) sent

]
(5)

=
∑

w1,w2

1
M1M2

∑
x1∈Xn

1

∑
x2∈Xn

2

ft(xt|wt)×

P
[
ψt(Yt) �= wt|(w1, w2,x1,x2) sent

]
. (6)

A rate pair (R1, R2) is said to be achievable for the
interference channel with confidential messages if, for any
ε0 > 0, there exists a (M1,M2, n, Pe) code such that

Mt ≥ 2nRt , Pe ≤ ε0 for t = 1, 2 (7)

and

H(W1) −H(W1|Y2,W2) ≤ nε0 (8)

H(W2) −H(W2|Y1,W1) ≤ nε0. (9)

B. The Broadcast Channel

A discrete memoryless broadcast channel with confidential
messages is described by finite sets X , Y1, Y2, and a
conditional probability distribution p(y1, y2|x). Symbols x ∈
X are channel inputs and (y1, y2) ∈ (Y1 × Y2) are channel
outputs at receivers 1 and 2, respectively. The transmitter
intends to send independent message Wt ∈ {1, . . . ,Mt} �
Wt to respective receivers t ∈ {1, 2} in n channel uses with
perfect secrecy, as measured by equivocation at the other
receiver. The channel is memoryless in the sense that

p(y1,y2|x) =
n∏

i=1

p(y1,i, y2,i|xi). (10)

A stochastic encoder f is specified by a matrix of conditional
probabilities f(x|w1, w2), where x ∈ X n, wt ∈ Wt, and∑

x∈Xn

f(x|w1, w2) = 1. (11)

Note that f(x|w1, w2) is the probability that the messages
(w1, w2) are encoded as channel input x. The decoding
function at the receiver t is a mapping φt : Yt → Wt.
The secrecy levels with respect to the confidential messages
W1 and W2 are measured, respectively, at receivers 1 and 2
by the normalized equivocations (3).

An (M1,M2, n, Pe) code for the broadcast channel con-
sists of the encoding function f , two decoding functions φ 1,
φ2, and the average error probability given by (4), where for
t = 1, 2,

Pe,t =
∑

w1,w2

1
M1M2

P
[
φt(Yt) �= wt|(w1, w2) sent

]
(12)

=
∑

w1,w2

1
M1M2

∑
x∈Xn

f(x|w1, w2)×

P
[
φt(Yt) �= wt|(w1, w2,x) sent

]
. (13)

A rate pair (R1, R2) is said to be achievable for the broadcast
channel with confidential messages if, for any ε0 > 0, there
exists a (M1,M2, n, Pe) code which satisfies (7)-(9).

C. Statement of the Result

The following theorems are the main results of this paper.
The theorems give the outer and inner bounds on capacity
regions of interference and broadcast channels with confi-
dential messages.

We define π as a class of joint distributions and R(π) as
the union over all distributions in π of all (R1, R2) satisfying

0 ≤ R1 ≤ I(V1;Y1|U) − I(V1;Y2|U)
0 ≤ R2 ≤ I(V2;Y2|U) − I(V2;Y1|U) (14)

where U , V1, and V2 are auxiliary random variables. In
particular, we consider the following three classes of joint
distributions. For the interference channel, let π IC−O be the
class of distributions p(u, v1, v2, x1, x2, y1, y2) that factor as

p(u)p(v1, v2|u)p(x1|v1)p(x2|v2)p(y1, y2|x1, x2) (15)

and πIC−I be the class of distributions that factor as

p(u)p(v1|u)p(v2|u)p(x1|v1)p(x2|v2)p(y1, y2|x1, x2). (16)

For broadcast channel, let πBC denote the class of distribu-
tions p(u, v1, v2, x, y1, y2) that factor as

p(u)p(v1, v2|u)p(x|v1, v2)p(y1, y2|x). (17)

Theorem 1: (Outer Bound) For the interference channel
(X1 ×X2, p(y1, y2|x1, x2),Y1 × Y2) with confidential mes-
sages, the capacity region

CIC ⊆ R(πIC−O).

For the broadcast channel (X , p(y1, y2|x),Y1 × Y2) with
confidential messages, the capacity region

CBC ⊆ R(πBC).



We provide the proof of outer bounds in Sec. III.
Let RIC−I(πIC−I) denote the union over all distributions

in πIC−I of all (R1, R2) satisfying

0 ≤ R1 ≤ I(V1;Y1|U) − I(V1;Y2|V2, U)
0 ≤ R2 ≤ I(V2;Y2|U) − I(V2;Y1|V1, U). (18)

Theorem 2: (Inner Bound for IC-CM) Any rate pair

(R1, R2) ∈ RIC−I(πIC−I)

is achievable for the interference channel with confidential
messages.
We provide the proof in Sec. IV.

Let RBC(πBC) denote the union over all distributions in
πBC of all (R1, R2) satisfying

0 ≤ R1 ≤ I(V1;Y1|U) − I(V1;Y2|V2, U) − I(V1;V2|U)
0 ≤ R2 ≤ I(V2;Y2|U) − I(V2;Y1|V1, U) − I(V1;V2|U).

(19)

Theorem 3: (Inner Bound for BC-CM) Any rate pair
(R1, R2) ∈ RBC(πBC) is achievable for the broadcast
channel with confidential messages.
We prove Theorem 3 in Sec. V.

We note that, for BC-CM, we can employ joint encoding
at the transmitter. However, to preserve confidentiality, each
achievable rate is with a penalty in terms of I(V1;V2|U).

III. OUTER BOUND

We now prove Theorem 1 and derive the outer bound for
R1. The outer bound for R2 will follow by symmetry. Fano’s
inequality implies that

H(W1|Y1) ≤ ε0 log(M1 − 1) + h(ε0) � nδ1 (20)

where h(x) is the binary entropy function.
The secrecy requirement (8) implies that

nR1 = H(W1) ≤ H(W1|Y2,W2) + nε0. (21)

First, we write

H(W1|Y2,W2)
≤ H(W1|Y2) (22)

= H(W1) − I(W1;Y2) (23)

= I(W1;Y1) − I(W1;Y2) +H(W1|Y1) (24)

≤ I(W1;Y1) − I(W1;Y2) + nδ1 (25)

where the last step follows from Fano’s inequality (20).
Let

Yi−1
1 = [y1,i, . . . , y1,i−1]

and Ỹi+1
2 = [y2,i+1, . . . , y2,n].

We use the chain rule to expand I(W1;Y1) as

I(W1;Y1)

=
n∑

i=1

[I(W1;Y1,i|Yi−1
1 ) (26)

=
n∑

i=1

[I(W1, Ỹi+1
2 ;Y1,i|Yi−1

1 )

− I(Ỹi+1
2 ;Y1,i|Yi−1

1 ,W1)] (27)

=
n∑

i=1

[I(W1;Y1,i|Yi−1
1 , Ỹi+1

2 ) + I(Ỹi+1
2 ;Y1,i|Yi−1

1 )

− I(Ỹi+1
2 ;Y1,i|Yi−1

1 ,W1)] (28)

=
n∑

i=1

I(W1;Y1,i|Yi−1
1 , Ỹi+1

2 ) + Θ1 − Θ2 (29)

where

Θ1 =
n∑

i=1

I(Ỹi+1
2 ;Y1,i|Yi−1

1 ), (30)

Θ2 =
n∑

i=1

I(Ỹi+1
2 ;Y1,i|Yi−1

1 ,W1). (31)

Similarly, we can expand the term I(W1;Y2) as

I(W1;Y2)

=
n∑

i=1

I(W1;Y2,i|Ỹi+1
2 ) (32)

=
n∑

i=1

[I(W1,Yi−1
1 ;Y2,i|Ỹi+1

2 )

− I(Yi−1
1 ;Y2,i|Yi−1

1 , Ỹi+1
2 )] (33)

=
n∑

i=1

[I(W1;Y2,i|Yi−1
1 , Ỹi+1

2 ) + I(Yi−1
1 ;Y2,i|Ỹi+1

2 )

− I(Yi−1
1 ;Y2,i|Ỹi+1

2 ,W1)] (34)

=
n∑

i=1

I(W1;Y2,i|Yi−1
1 , Ỹi+1

2 ) + Θ3 − Θ4 (35)

where

Θ3 =
n∑

i=1

I(Yi−1
1 ;Y2,i|Ỹi+1

2 ), (36)

Θ4 =
n∑

i=1

I(Yi−1
1 ;Y2,i|Ỹi+1

2 ,W1). (37)

The relationships between Θ1 and Θ3, and Θ2 and Θ4 are
given in the following lemma.

Lemma 1: Θ1 = Θ3 and Θ2 = Θ4.
Lemma 1 follows from [2, Lemma 7]. We provide its proof
in Appendix for completeness.

Combining (21), (25), (29), and (35), Lemma 1 implies
that

nR1 − n(δ1 + ε0) ≤
n∑

i=1

[I(W1;Y1,i|Yi−1
1 , Ỹi+1

2 )

− I(W1;Y2,i|Yi−1
1 , Ỹi+1

2 )]. (38)



Now, for δ � δ1 + ε0, we have

R1 ≤ 1
n

n∑
i=1

[I(W1;Y1,i|Yi−1
1 , Ỹi+1

2 )

− I(W1;Y2,i|Yi−1
1 , Ỹi+1

2 )] + δ. (39)

Following the method of [7, Chapter 14], we introduce a
random variable Q uniformly distributed over {1, 2, . . . , n}
and independent of (W1,W2,X1,X2,Y1,Y2). Now we can
bound R1 as follows

R1 ≤ 1
n

n∑
i=1

[I(W1;Y1,i|Yi−1
1 , Ỹi+1

2 , Q = i)

− I(W1;Y2,i|Yi−1
1 , Ỹi+1

2 , Q = i)] + δ (40)

=
n∑

i=1

p(Q = i)[I(W1;Y1,Q|YQ−1
1 , ỸQ+1

2 , Q = i)

− I(W1;Y2,Q|YQ−1
1 , ỸQ+1

2 , Q = i)] + δ (41)

= I(W1;Y1,Q|YQ−1
1 , ỸQ+1

2 , Q)

− I(W1;Y2,Q|YQ−1
1 , ỸQ+1

2 , Q) + δ (42)

For

U � (YQ−1
1 , ỸQ+1

2 , Q) (43)

Y1 � Y1,Q and Y2 � Y2,Q, (44)

(42) becomes

R1 ≤ I(W1;Y1|U) − I(W1;Y2|U) + δ (45)

= I(W1, U ;Y1|U) − I(W1, U ;Y2|U) + δ. (46)

Lastly, we define

V1 � (W1, U) and V2 � (W2, U) (47)

to obtain

R1 ≤ I(V1;Y1|U) − I(V1;Y2|U) + δ. (48)

Similarly, we can bound R2 as

R2 ≤ I(V2;Y2|U) − I(V2;Y1|U) + δ. (49)

Note that, due to (47), the joint distribution
p(u, v1, v2, x, y1, y2) factors as (17) for a broadcast
channel and factors as (15) for an interference channel.

IV. INNER BOUND FOR THE INTERFERENCE CHANNEL

WITH CONFIDENTIAL MESSAGES

In this section we consider the achievable rate region for
the interference channel. We prove that the region R(π I−IC)
is achievable. The coding structure for the IC-CM is illus-
trated in Fig. 3. We employ a time-sharing parameterU in the
sense of Han-Kobayashi [4] and two equivocation codebooks
(stochastic encoders), one for each message W1 and W2.
Each encoder t will map vt into a channel input xt. The
detail of random code generation is described as follows.

We fix p(u), p(v1|u) and p(v2|u), as well as
p(x1, x2|v1, v2) = p(x1|v1)p(x2|v2). Let

R′
1 � I(V1;Y2|V2, U) − ε1 (50)

R′
2 � I(V2;Y1|V1, U) − ε1 (51)

Fig. 3. Code construction for the IC-CM

where ε1 > 0 and ε1 → 0 as n→ ∞.

• Codebook generation: We generate randomly a typical
sequence u with probability p(u) =

∏n
i=1 p(ui). We

assume that both the transmitters and the receivers know
the sequence u.
For transmitter t, t = 1, 2, we generate Qt = 2n(Rt+R′

t)

independent sequences vt each with probability

p(vt|u) =
n∏

i=1

p(vt,i|ui)

and label them

vt(wt, kt), wt ∈ {1, . . . ,Mt} and kt ∈ {1, . . . ,M ′
t}

(52)

where Mt = 2nRt and M ′
t = 2nR′

t . Without loss of
generality, Mt, M ′

t , and Qt are assumed to be integers.
Let’s denote the transmitter t codebook as

Ct �
{
vt(wt, kt), for all (wt, kt)

}
and its wt-th sub-codebook (bin)

Ct(wt) � {vt(wt, kt), for kt = 1, . . . ,M ′
t

}
is defined by the labeling in (52).

• Encoding: To send a message pair (w1, w2) ∈ W1 ×
W2, each transmitter employs a stochastic encoder.
Encoder t randomly chooses an element v t(wt, kt) from
the sub-codebook Ct(wt). Each transmitter generates the
channel input sequences based on the mapping p(x1|v1)
and p(x2|v2) respectively.

• Decoding: For a given typical sequence u, let
A

(n)
ε (Vt, Yt|u) denote the set of jointly typical se-

quences vt and yt with respect to p(vt, yt|u) [7, Chapter
14.2]. Given a sequence u, decoder t chooses w t such
that (vt(wt, kt),yt) ∈ A

(n)
ε (Vt, Yt|u) if such wt exists

and and is unique; otherwise, an error is declared.

A. Error Probability Analysis

To bound the probability of error, we define the event

Et(wt, kt) � {(vt(wt, kt),yt|u) ∈ A(n)
ε (Vt, Yt|u)}. (53)

Without loss of generality, we can assume that transmitter
1 sends the message w1 = 1 associated with the codeword
v1(1, 1), and define the corresponding event

K1 � {v1(1, 1) sent}. (54)



The union bound on the error probability of receiver 1 is as
follows

Pe1 ≤ P

{⋂
k1

Ec
1(1, k1)

∣∣∣K1

}

+
∑

w1 �=1

∑
k1

P{E1(w1, k1)|K1}

≤ P{Ec
1(1, 1)|K1} +

∑
w1 �=1

∑
k1

P{E1(w1, k1)|K1}

(55)

where Ec
1(1, k1) denotes the event

{(v1(1, k1),y1) /∈ A(n)
ε (V1, Y1|u)}.

Following the joint asymptotic equipartition property (AEP)
[7], we have

P{Ec
1(1, 1)|K1} ≤ ε, (56)

and, for w1 �= 1,

P{E1(w1, k1)|K1}
=

∑
(v1(w1,k1),y1)∈A

(n)
ε (V1,Y1|u)

p(v1(w1, k1),y1|u)

=
∑

(v1(w1,k1),y1)∈A
(n)
ε (V1,Y1|u)

p(v1(w1, k1)|u)p(y1|u)

≤ 2n[H(V1,Y1|U)+ε] 2−n[H(V1|U)−ε] 2−n[H(Y1|U)−ε]

= 2−n[I(V1;Y1|U)−3ε]. (57)

Note that (57) follows from the code generation process,
namely, for a given u, codewords v1(1, 1) and v1(w1, k1)
(where w1 �= 1) are independent, and y1 is the result of
sending the codeword v1(1, 1) over the channel, so y1 and
v1(w1, k1) are independent, for w1 �= 1 and given u. Hence,
we can bound the probability of error as

Pe1 ≤ ε+Q12−n[I(V1;Y1|U)−3ε]

= ε+ 2n(R1+R′
1) 2−n[I(V1;Y1|U)−3ε] (58)

So, if

R1 +R′
1 < I(V1;Y1|U), (59)

then for any ε0 > 0, Pe1 ≤ ε0 as n → ∞. Similar, for
receiver 2 if

R2 +R′
2 < I(V2;Y2|U), (60)

the probability error at receiver 2 can be made to arbitrary
small, i.e., Pe2 ≤ ε0 as n → ∞. Hence, (4), (50), and (59)-
(60) imply that Pe → 0 as long as n→ ∞ and the rate pair
(R1, R2) ∈ R(πI−IC).

B. Equivocation

To show that secrecy requirements (8) and (9) hold, we
will use the following lemma.

Lemma 2: The random code generation implies that the
following form Markov chains hold

W2 → (V2,U) → (Y2,W1)
W1 → (V1,V2,U) → Y2

Proof: The result follows easily by the problem defin-
ition and the random code construction.
Markov chains in Lemma 2 yield

I(W1;W2|Y2,V2,U) = 0 (61)

I(W1;Y2|V1,V2,U) = 0 (62)

We next consider the following equivocation bound

H(W1|Y2,W2)
≥ H(W1|Y2,W2,V2,U) (63)

= H(W1|Y2,V2,U) (64)

= H(W1,Y2|V2,U) −H(Y2|V2,U)
= H(W1,V1,Y2|V2,U) −H(V1|Y2,V2,U,W1)

−H(Y2|V2,U)
= H(W1,V1|V2,U) −H(V1|Y2,V2,U,W1)

− [H(Y2|V2,U) −H(Y2|V1,V2,U,W1)]
= H(W1,V1|V2,U) −H(V1|Y2,V2,U,W1)

− [H(Y2|V2,U) −H(Y2|V1,V2,U)] (65)

= H(W1,V1|V2,U) −H(V1|Y2,V2,U,W1)
− I(V1;Y2|V2,U)

≥ H(V1|V2,U) −H(V1|Y2,V2,U,W1)
− I(V1;Y2|V2,U) (66)

where inequality (63) is due to the fact that conditioning
reduces entropy, and (64) and (65) follow from (61) and
(62), respectively.

Now, we consider the first term in (66). Note that given
U = u, V1 and V2 are independent and V1 has Q1 possible
values with equal probability. Hence, we have

H(V1|U,V2) = H(V1|U)
= logQ1

= n(R1 +R′
1). (67)

We next show that H(V1|Y2,V2,U,W1) ≤ nε2, where
ε2 → 0 as n → ∞. In order to calculate the conditional
entropy H(V1|Y2,V2,U,W1), we consider the following
situation. Let’s fix W1 = w1, and assume that transmitter 1
sends a codeword v1(w1, k1) ∈ C1(w1), for 1 ≤ k1 ≤ M ′

1,
to the channel and receiver 2 knows the sequence V2 = v2

and U = u. Given index W1 = w1, receiver 2 decodes the
codeword v1(w1, k1) based on the received sequence y2. Let
λ(w1) denote the average probability of error of decoding the
index k1 at receiver 2. Based on joint typicality [7, Chapter
8], we have the following lemma.

Lemma 3: λ(w1) ≤ ε0 as n→ ∞.
Proof of Lemma 3 is in the Appendix.



Fano’s inequality implies that

1
n
H(V1|Y2,V2,U,W1 = w1) ≤ 1

n
[1 + λ(w1) logM ′

1]

≤ 1
n

+ ε0I(V1;Y2|V2, U)

� ε2 (68)

where the second inequality follows from Lemma 3 and (50).
Consequently,

1
n
H(V1|Y2,V2,U,W1)

=
1
n

∑
w1∈W1

p(W1 = w1)H(V1|Y2,V2,U,W1 = w1)

≤ ε2. (69)

Finally, the third term in (66) can be bounded based on the
following lemma.

Lemma 4:

I(V1;Y2|V2,U) ≤ nI(V1;Y2|V2, U) + nε3 (70)

where ε3 → 0 as n→ 0.
The proof is given in the Appendix.

Therefore, by using (67), (69), and (70), we can rewrite
(66) as

1
n
H(W1|Y2,X2,W2)

≥ R1 +R′
1 − I(V1;Y2|V2, U) − ε2 − ε3.

By the definition of R′
1 (50), we have

R1 − 1
n
H(W1|Y2,X2,W2) ≤ ε4 (71)

where ε4 � ε1 + ε2 + ε3, and, thus, the security condition
(8) is satisfied. Following the same approach, we can prove
that (9) is satisfied.

V. INNER BOUND FOR THE BROADCAST CHANNEL WITH

CONFIDENTIAL MESSAGES

We now prove Theorem 3 based on the Slepian-Wolf
binning [5] and double binning. In this section we redefine
the parameters R1, R2, R′

1, R′
2, Q1, Q2, M1, and M2.

The coding structure for the BC-CM is shown in Fig. 4.
We employ a joint encoder generating two equivocation

Fig. 4. Code construction for the BC-CM

codewords v1 and v2, one for each message W1 and W2.
The equivocation codewords are mapped into the channel
input x. The detail of random code generation is described
as follows.

We fix p(u), p(v1|u) and p(v2|u), as well as p(x|v1, v2).
Let 0 ≤ α ≤ 1,

R′
1 � I(V1;Y2|V2, U) − ε′1

R′
2 � I(V2;Y1|V1, U) − ε′1 (72)

and

R† = I(V1;V2|U) (73)

where ε′1 > 0 and ε′1 → 0 as n→ ∞.
• Codebook generation: We generate randomly a typical

sequence u with probability p(u) =
∏n

i=1 p(ui). We
assume that both the transmitter and the receivers know
the sequence u.
We generate Qt = 2n(Rt+R′

t+R†) independent se-
quences vt each with probability

p(vt|u) =
n∏

i=1

p(vt,i|ui)

and label them

vt(wt, st, kt), for wt ∈ {1, . . . ,Mt},
st ∈ {1, . . . , Jt}, and kt ∈ {1, . . . , Gt}. (74)

where Mt = 2nRt , Jt = 2nR′
t , and Gt = 2nR†

. Without
loss of generality Qt, Mt, Jt, and Gt are considered to
be integers.

Fig. 5. Double binning for vt sequences

Let’s denote the transmitter t codebook as

Ct �
{
vt(wt, st, kt), for all (wt, st, kt)

}
.

Based on the labeling in (74), the codebook C t is
partitioned into Mt bins, and the wt-th bin is

Ct(wt) � {vt(wt, st, kt), for st ∈ {1, . . . , Jt}
and kt ∈ {1, . . . , Gt

}
. (75)

Furthermore, each bin Ct(wt) is divided into Jt sub-
bins, and the (wt, st)-th sub-bin is

Ct(wt, st) �
{
vt(wt, st, kt), for kt ∈ {1, . . . , Gt}

}
.

(76)



The double binning structure for vt sequences is shown
in Fig. 5.

• Encoding: To send the message pair (w1, w2) ∈ W1 ×
W2, the transmitter employs a stochastic encoder. We
randomly chooses an sub-bin Ct(wt, st) from the bin
Ct(wt), for t = 1, 2. Next, we select a pair (k1, k2)
such that(

v1(w1, st, k1),v2(w2, s2, k2)
) ∈ A(n)

ε (V1, V2|u),

where A(n)
ε (V1, V2|u) denotes, for a given typical se-

quence u, the set of jointly typical sequences v1 and
v2 with respect to p(v1, v2|u). If there are more than
one such pair, then randomly select one. Generate the
channel input sequence x according to the mapping
p(x|v1, v2).

• Decoding: For a given typical sequence u, let
A

(n)
ε (Vt, Yt|u) denote the set of jointly typical se-

quences vt and yt with respect to p(vt, yt|u). De-
coder t chooses wt such that (vt(wt, st, kt),yt) ∈
A

(n)
ε (Vt, Yt|u) if such wt exists and and is unique;

otherwise, an error is declared.

A. Error Probability Analysis

Without loss of generality, we assume that the transmitter
sends the message pair (w1 = 1, w2 = 1) and s1 = s2 = 1.
First, we consider the error event T that the encoder can not
find an appropriate jointly typical pair, i.e.,

T � {(v1(1, 1, k1),v2(1, 1, k2)
)
/∈ A(n)

ε (V1, V2|u),
for st = 1, . . . , Jt, kt = 1, . . . , Gt, and t = 1, 2}. (77)

The definition of R† in (73) implies that

2R† > I(V1, V2|U). (78)

Hence, following the approach of [8], we have that

P{T } ≤ δ3 (79)

where δ3 > 0 and δ3 → 0 as n → ∞. In other word, the
encoding is successful with probability close to 1 as long as
n is large.

In the following, we assume that (v1(1, 1, 1), v2(1, 1, 1))
is sent and define the event

K2 � {(v1(1, 1, 1),v2(1, 1, 1)) ∈ A(n)
ε (V1, V2|u)}.

Now, the error probability at receiver 1 is bounded as follows

Pe1 ≤ P{T }+ (1 − P{T })
[
P

{ ⋂
s1,k1

Ec
1(1, s1, k1)

∣∣∣K2

}

+
∑

w1 �=1

∑
s1,k1

P{E1(w1, s1, k1)|K2}
]

≤ P{T }+ P{Ec
1(1, 1, 1)|K2}

+
∑

w1 �=1

∑
s1,k1

P{E1(w1, s1, k1)|K2} (80)

where

Et(wt, st, kt) = {(vt(wt, st, kt),yt) ∈ A(n)
ε (Vt, Yt|u)}.

Joint typicality [7, Chapter 14] implies that

P{Ec
1(1, 1, 1)|K2} ≤ ε,

P{E1(w1, s1, k1)|K2} ≤ 2−n[I(V1;Y1|U)−ε] for w1 �= 1.

Hence, we can bound the probability of error as

Pe1 ≤ δ3 + ε+Q12−n[I(V1;Y1|U)−ε]

= δ3 + ε+ 2n(R1+R′
1+R†) 2−n[I(V1;Y1|U)−ε] (81)

So, if

R1 +R′
1 +R† < I(V1;Y1|U), (82)

then for any ε0 > 0, Pe1 ≤ ε0 as n → ∞. Similarly, for
receiver 2, if

R2 +R′
2 +R† < I(V2;Y2|U), (83)

then Pe2 ≤ ε0 as n → ∞. Hence, (4), (72), (73), (82), and
(83) imply that Pe → 0 as long as n→ ∞ and the rate pair
(R1, R2) ∈ RBC(πBC).

B. Equivocation

Here, we prove that secrecy requirements (8) and (9) hold
for BC-CM. Following the same approach as (63)-(66), we
have

H(W1|Y2,W2) ≥ H(V1|V2,U) −H(V1|Y2,V2,U,W1)
− I(V1;Y2|V2,U). (84)

Now, we consider the first term in (84)

H(V1|U,V2) = H(V1|U) − I(V1;V2|U) (85)

Note that given U = u, V1 has Q1 possible values with
equal probability. Hence, we have H(V1|U) = logQ1.
Using the same approach as in Lemma 4, we can obtain

I(V1;V2|U) ≤ nI(V1;V2|U) + nε′2 (86)

Hence, by the definition of R† in (73), we have

H(W1,V1|U) ≤ logQ1 − nI(V1;V2|U) − nε′2
= n(R1 +R′

1 + R†) − I(V1;V2|U) − nε′2
= n(R1 +R′

1 − ε′2). (87)

Following joint typicality [7], (69) implies

H(V1|Y2,V2,U,W1) ≤ nε′3

where ε′3 → 0 as n→ 0. Applying Lemma 4, the third term
in (84) can be bounded as

I(V1;Y2|V2,U) ≤ nI(V1;Y2|V2, U) + nε′4 (88)

where ε′4 → 0 as n → 0. Hence, by using (86), (87), and
(88), we can rewrite (84) as

1
n
H(W1|Y2,W2) ≥ R1 − ε′5 (89)

where ε′5 � ε′1 + ε′2 + ε′3 + ε′4, and thus the security condition
(8) is satisfied. Following the same approach, we can prove
that (9) also holds.



APPENDIX

Proof: [Lemma 1]

Θ1 =
n∑

i=1

I(Ỹi+1
2 ;Y1,i|Yi−1

1 ) (90)

=
n∑

i=1

n∑
j=i+1

I(Y2,j ;Y1,i|Yi−1
1 , Ỹj+1

2 ) (91)

=
n∑

j=2

j−1∑
i=1

I(Y2,j ;Y1,i|Yi−1
1 , Ỹj+1

2 ) (92)

=
n∑

j=2

I(Y2,j ;Y
j−1
1 |Ỹj+1

2 ) (93)

=
n∑

j=1

I(Y2,j ;Y
j−1
1 |Ỹj+1

2 ) (94)

= Θ3. (95)

Note that (94) follows from Yj−1
1 = ∅, for j = 1.

Similarly, by using Ỹj+1
2 = ∅, for j = n, we have

Θ4 =
n∑

i=1

I(Yi−1
1 ;Y2,i|Ỹi+1

2 ,W1) (96)

=
n∑

i=1

i−1∑
j=1

I(Y1,j ;Y2,i|Yj−1
1 , Ỹi+1

2 ,W1) (97)

=
n−1∑
j=1

n∑
i=j+1

I(Y1,j ;Y2,i|Yj−1
1 , Ỹi+1

2 ,W1) (98)

=
n−1∑
j=1

I(Y1,i; Ỹ
j+1
2 |Yj−1

1 ,W1) (99)

= Θ2. (100)

Proof: [Lemma 3]
For a given typical sequence pair (v2,u), let
A

(n)
ε (V1, Y2|u,v2) denote the set of jointly typical

sequences v1 and y2 with respect to p(v1, y2|v2, u). To
simplify notation, we use A

(n)
ε represent this set in this

proof.
For given W1 = w1, decoder 2 chooses k1 so that

(v1(w1, k1),y2) ∈ A(n)
ε

if such k1 exists and and is unique; otherwise, an error is
declared. Define the event

Ê(k1) = {(v1(w1, k1),y2) ∈ A(n)
ε }. (101)

Without loss of generality, we assume that v1(w1, k1 = 1)
was sent, and define the event

K̂1 =
{
v1(w1, 1) sent

}
. (102)

Hence

λ(w1) ≤ P{Êc(k1 = 1)|K̂1} +
∑
k1 �=1

P{Ê(k1)|K̂1} (103)

where Êc(k1 = 1) denotes the event

{(v1(w1, 1),y2) /∈ A(n)
ε }.

Following the joint AEP [7], we have

P{Êc(k1 = 1)|K̂1} ≤ ε, (104)

and, for k1 �= 1,

P{Ê(k1)|K̂1}
=

∑
(v1(w1,k1),y2)∈A

(n)
ε

p(v1(w1, k1),y2|v2,u)

=
∑

(v1(w1,k1),y2)∈A
(n)
ε

p(v1(w1, k1)|v2,u)p(y2|v2,u)

(105)

≤ |A(n)
ε | · 2−n[H(V1|V2,U)−ε] 2−n[H(Y2|V2,U)−ε]

≤ 2n[H(V1,Y2|V2,U)+ε] 2−n[H(V1|V2,U)−ε] 2−n[H(Y2|V2,U)−ε]

= 2−n[I(V1;Y2|V2,U)−3ε]. (106)

Note that (105) follows from the code generation process,
namely, for a given u, codewords v1(w1, 1) and v1(w1, k1)
are independent, and y2 is the result of sending the code-
word v1(w1, 1) over the channel, so y2 and v1(w1, k1) are
independent, for k1 �= 1 and given v2 and u. Now, we can
bound the probability of error as

λ(w1) ≤ ε+M ′
1 · 2−n[I(V1;Y2|V2,U)−3ε] (107)

≤ ε+ 2nR′
1 2−n[I(V1;Y2|V2,U)−3ε]. (108)

Note that R′
1 = I(V1;Y2|V2, U) − ε1. Hence, by choosing

ε1 > 3ε, we have

λ(w1) ≤ ε0 (109)

where ε0 → 0 as n→ ∞.

Proof: [Lemma 4]
Let A(n)

ε (U, V1, V2, Y2) denote the set of typical sequences
(u,v1,v2,y2) with respect to p(u, v1, v2, y2). To simplify
notation, we use A(n)

ε represent this set in this proof. Let

μ(u,v1,v2,y2) =
{

1, (u,v1,v2,y2) /∈ A
(n)
ε ;

0, otherwise
(110)

be the corresponding indicator function.
we expand I(V1;Y2|V2,U) as

I(V1;Y2|V2,U)
≤ I(V1, μ;Y2|V2,U)
= I(V1;Y2|V2,U, μ) + I(μ;Y2|V2,U)

=
1∑

j=0

P (μ = j)I(V1;Y2|V2,U, μ = j)

+ I(μ;Y2|V2,U) (111)



Note that

P (μ = 1)I(V1;Y2|V2,U, μ = 1)

≤ n log |Y2| · P ((u,v1,v2,y2) /∈ A(n)
ε )

≤ nε log |Y2| , (112)

and

I(μ;Y2|V2,U) ≤ H(μ) ≤ 1. (113)

We only consider the term P (μ = 0)I(V1;Y2|V2,U, μ =
0). Following the sequence joint typicality properties [7], we
have

P (μ = 0)I(V1;Y2|V2,U, μ = 0)
≤ I(V1;Y2|V2,U, μ = 0)

=
∑

(u,v1,v2,y2)∈A
(n)
ε

p(u,v1,v2,y2)

log
p(v1,y2|v2,u)

p(y2|v2,u)p(v1|v2,u)

=
∑

(u,v1,v2,y2)∈A
(n)
ε

p(u,v1,v2,y2)[− log p(y2|v2,u)

− log p(v1|v2,u) + log p(v1,y2|v2,u)]

≤
∑

(u,v1,v2,y2)∈A
(n)
ε

p(u,v1,v2,y2) · n[H(Y2|V2, U)

+H(V1|V2, U) −H(V1, Y2|V2, U) + 3ε]
≤ n[H(Y2|V2, U) +H(V1|V2, U)

−H(V1, Y2|V2, U) + 3ε]
= nI(V1;Y2|V2, U) + 3ε. (114)

Combining (111), (112), (113), and (114), we have the
desired result

I(V1;Y2|V2U)

≤ nI(V1;Y2|V2, U) + n
(
ε log |Y2| + 3ε+

1
n

)
= nI(V1;Y2|V2, U) + nε3

where
ε3 � ε log |Y2| + 3ε+

1
n
.
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